Big Data: как применять и анализировать большие данные?
Одно из самых популярных направлений в IT - применение больших данных. Big Data - это масштабные, чаще всего неупорядоченные массивы информации, и технологии работы с ними. Такая информация может храниться в базах данных, в сетях социальных медиа, в системах GPS, датчиках и т.д.
В использовании Big Data есть преимущества для бизнеса, поскольку это открывает новые возможности и помогает компаниям развиваться. Онлайн-магазины, например, используют анализ больших данных для создания персонифицированных сервисов и продуктов, ориентированных на поведение клиентов.
Технологии анализа больших данных, такие как системы машинного обучения, помогают исследователям и аналитикам находить скрытые закономерности в массивах информации. К примеру, в области медицины это может привести к развитию новых лекарств и методов лечения.
Использование больших данных - это не просто модный тренд, это реальный инструмент, который помогает организациям и индивидуальным предпринимателям анализировать рынки, предлагать персонализированный контент и разрабатывать более эффективные продукты и сервисы для потенциальных клиентов.
Влияние больших данных на науку и бизнес
3 сентября 2008 года в журнале Nature был выпущен специальный номер, посвященный влиянию огромных массивов информации на развитие науки. Так появился термин Big Data. С того момента прошло несколько лет, и стало ясно, что аналитика больших данных актуальна для любой отрасли.
Объемы данных возрастают экспоненциально, при этом традиционные методы и инструменты становятся неэффективными. Рост количества информации произошел благодаря развитию информационных технологий и расширению возможностей вычислительной техники. Помимо интернета (социальные сети, сайты, интернет-магазины, форумы, СМИ), данные поступают с мобильных устройств, измерительных приборов, метеостанций, аудио- и видеорегистраторов, корпоративных систем, их источники постоянно растут. Каждый день объем данных продолжает увеличиваться.
Для хранения, обработки и анализа такого огромного объема информации требуются специальные алгоритмы и программные средства. Они также входят в понятие Big Data. Данная технология нашла применение во многих сферах, включая медицину, банковское дело, страхование, маркетинг, рекламу и другие. Так, большие данные используются для создания персонализированных рекомендаций, предотвращения кибератак и мошенничества, определения тенденций в медицине и других отраслях.
Анализ методов хранения данных
Чтобы получить пользу от больших данных, их необходимо эффективно управлять, т.к. они могут накапливаться с масштабируемой скоростью. Big Data охватывает огромный, постоянно обновляемый массив разнородной информации, для работы с которым используется несколько этапов. Вначале производится сбор данных из различных источников информации, затем выполняются процедуры хранения, обработки и защиты их от потерь. Особенно актуальны в этом контексте облачные решения, которые обладают несомненными преимуществами по сравнению с объемной локальной IT-инфраструктурой.
При работе с большими объемами информации, созданными различными источниками, в собственной IT-инфраструктуре может возникнуть ряд проблем, которые затруднят ее масштабирование. Нагрузки на физический сервер в пиковые моменты могут быть не предсказуемы, что может привести к выходу из строя сервера. Кроме того, нарастание собственной IT-инфраструктуры может повлечь за собой очень серьезные расходы на ее создание, поддержку и защиту. Облачные технологии позволяют отказаться от закупки дорогостоящего оборудования и вместе с тем обеспечить быстрое масштабирование вычислительных ресурсов, что способствует надежности, отказоустойчивости и гибкой настройке облачной хранящейся информации. Многие компании сегодня переносят инфраструктуру в облако, чтобы нести меньшие финансовые и физические риски при работе с большими объемами данных.
Перед нами завершающий и наиболее значимый этап работы с большими данными — их анализ. Он играет ключевую роль в использовании потенциала Big Data в бизнесе. Именно анализ помогает избавиться от ненужного и выделить наиболее ценную информацию для компании.
Существует множество методов анализа больших данных. Охватить все из них в рамках данной статьи невозможно, поэтому мы расскажем о наиболее важных.
Для анализа больших объемов данных необходима предварительная обработка данных. Этот метод заключается в приведении разнородных данных к общему виду, дополнении недостающей информации и отсеивании лишних. Такой этап работы с данными называется подготовительным и предшествует самому анализу.
Data Mining: извлечение полезной информации из разнородного массива
Data Mining - это метод, который позволяет извлекать полезные закономерности из различных источников информации. Суть метода заключается в том, что он позволяет выявить связи и зависимости, которые не видны на первый взгляд.
В рамках этого метода решаются задачи по классификации, кластеризации и анализу отклонений. Классификация позволяет определить принадлежность объекта к определенному классу, кластеризация - объединение объектов в группы в зависимости от степени их сходства, а анализ отклонений помогает выявлять аномалии и выбросы.
Таким образом, Data Mining является эффективным методом для извлечения полезной информации из различных источников и может применяться в различных областях, где необходимо обрабатывать большие объёмы данных.
Алгоритмы машинного обучения похожи на работу человеческого мозга, ведь они производят анализ входных данных и дают необходимые результаты. Нейронные сети особенно умелы в этом, проделывая сложную работу. Они могут обнаруживать лица на фотографиях или определять недобросовестные транзакции по различным признакам.
Прогнозирование будущих событий – это важный инструмент в современном бизнесе. С помощью метода прогностического анализа можно предсказать множество различных вещей, таких как поведение клиентов, динамику продаж, финансовые показатели организации, курсы валют, сроки доставки товаров, а также ремонтопригодность оборудования и многое другое.
Основная суть метода заключается в использовании данных из прошлого для прогнозирования будущих событий. Аналитики выявляют параметры, которые в наибольшей степени влияют на результат, и на основе их анализа, делают предположения о том, что может произойти в будущем.
Прогностический анализ применяется в многих сферах бизнеса и стал незаменимым инструментом планирования и принятия решений. Правильно использованный метод позволяет предугадать различные риски и возможности, что создает преимущество в условиях жесткой конкуренции на рынке.
За счет применения Big Data анализ статистики значительно уточняется. Важно, чтобы выборка данных была максимально представительной, в этом случае результаты анализа будут более точными и достоверными.
Визуализация данных – это процесс преобразования информации в доступный для восприятия формат, такой как карты, графики, диаграммы, схемы, гистограммы. Это финальный шаг анализа, который помогает представить результаты пользователю.
Чтобы осуществить визуализацию данных, используют различные инструменты Big Data, а методы могут меняться в зависимости от цели.
За последние годы объём данных, с которыми приходится иметь дело, значительно вырос. Так, в 2020 году наши пользователи сгенерировали около 60 зеттабайт информации, а к 2025 году этот объём может вырасти втрое https://meduza.io/. В связи с этим анализ Big Data является перспективным технологическим направлением, которому уделяют большое внимание крупные компании. Он актуален для представителей различных областей, таких как бизнес, наука и государственное управление.
Какие характеристики определяют Big Data как информацию?
Big Data - это данные, которые отличаются тремя основными свойствами, называемыми "тремя V":
Объем (Volume): Это означает, что данные должны быть в большом количестве. Эти данные уже измеряются не терабайтами, а петабайтами и эксабайтами.
Скорость (Velocity): Большие данные поступают непрерывно из разных источников, и этот процесс происходит очень быстро.
Разнообразие (Variety): Big Data - это информация разных типов, включая текстовые и графические документы, аудио- и видеофайлы, а также логи. Она может быть совсем неструктурированной или упорядоченной частично.
С ростом востребованности направления в последние годы к "трем V" были добавлены еще два признака: достоверность (Veracity) и ценность (Value). Это означает, что данные должны быть точными и приносить пользу бизнесу. Иногда выделяют еще жизнеспособность (Viability).
Каковы плюсы использования Big Data?
Применение технологии анализа больших данных дает возможность оптимизировать бизнес-процессы, повысить производительность, улучшить качество товаров и услуг, минимизировать риски, предвидеть тенденции рынка, а также получить глубокое понимание поведения клиентов, их потребностей и интересов для более точного попадания в целевую аудиторию. К примеру, большим сферам применения Технологии Big Data были телекоммуникационные компании, банковская и розничная отрасли. Применение Big Data позволяет повысить экологические характеристики и энергоэффективность в производстве. Для продавцов это выгодно, а для покупателей - удобно.
В настоящее время технологии хранения и анализа больших данных практически неизбежны и востребованы не только в торговле, рекламе и индустрии развлечений, но и в различных сферах деятельности, включая безопасность, медицину, сельское хозяйство, промышленность, энергетику, науку и государственное управление.
Рассмотрим несколько примеров практического применения больших данных, которые имеют актуальность в разных отраслях деятельности.
Революция в фармакологии: как Big Data помогает создавать лекарства
С использованием Big Data технологические компании могут создавать интеллектуальные продукты и сервисы, способные решать принципиально новые задачи. В США, например, была разработана платформа "вычислительной биологии", которая может помочь находить и создавать лекарственные препараты, способные точно попадать в цель и быть эффективными в лечении конкретных заболеваний.
Анализ больших данных уже используется для ускорения и повышения точности медицинских исследований. На конференции программистов DUMP были обнародованы данные о том, что использование Big Data в ходе цикличного медицинского тестирования выявило погрешность в 20% по сравнению с неавтоматизированными измерениями.
Анализ больших данных применяется и в Европе, где он внедряется в сферу медицины более активно. Исследования, проведенные в этой области, показали, что с помощью анализа информации на 150 000 пациентов можно выявлять связь определенных генетических факторов с заболеваемостью раком, что помогает более эффективно диагностировать и лечить заболевания.
Таким образом, внедрение инноваций в сферу медицины с помощью анализа больших данных позволяет создавать более эффективные лекарства и повышать точность медицинских исследований, что может привести к существенному улучшению качества жизни людей.
Маркетологи активно применяют большие данные в своей работе. Они анализируют информацию о покупках, поисковых запросах, посещениях и лайках в социальных сетях, чтобы определить предпочтения пользователей и предложить им наиболее интересные товары. С помощью Big Data реклама становится более целевой и эффективной.
Первопроходцем в области рекомендательных сервисов на основе анализа пользовательских данных является маркетплейс Amazon. В его системе используется не только информация об истории покупок и поведении клиентов, но и о внешних факторах, таких как время года или предстоящие праздники. Благодаря такому подходу система рекомендаций приносит более трети всех продаж.
Статья рассказывает о том, как банки используют большие данные для обеспечения безопасности транзакций и предотвращения мошенничества. Специалисты используют Big Data и машинное обучение, чтобы разработать модели поведения добросовестных пользователей. Таким образом, любое отклонение от нормального поведения вызывает сигнал тревоги для службы безопасности.
Один из ярких примеров – это Сбербанк. Система сравнения фотографий клиентов, полученных с помощью веб-камеры, с изображениями из базы, была внедрена еще в 2014 году. Благодаря этой системе точность идентификации была улучшена, а случаи мошенничества уменьшились в десять раз.
Таким образом, инструменты, основанные на Big Data и машинном обучении, позволяют банкам повысить уровень безопасности транзакций и защитить персональные данные клиентов от мошенников.
Улучшение производственных процессов с использованием Big Data
Сегодняшние производственные процессы все больше и больше опираются на сбор и анализ больших данных. Одна из главных задач таких систем - предотвращение простоев и уменьшение времени, затрачиваемого на производство. Для этого интеллектуальные системы отслеживают состояние оборудования и производят анализ данных, полученных от приборов мониторинга, средств измерения и логических контроллеров. Такой подход позволяет предотвратить поломки, выявить и исключить из производственного процесса неэффективные операции, а также снизить расходы на материалы и потребление энергии. Об этом сообщает сайт Controleng.ru.
Одним из примеров успешной реализации проектов в области сбора и анализа больших данных стало внедрение интеллектуальной платформы в аэропорту «Пулково» в 2020 году. Эта платформа управляет работой семидесяти служб компании и автоматизирует процессы, что делает управление аэропортом более прозрачным и эффективным. Оперативное получение полной информации по текущим процессам повышает качество работы предприятия. Внедрение интеллектуальной платформы также упрощает сотрудничество аэропорта с авиакомпаниями, помогает оптимизировать планирование ресурсов, в том числе техническое обслуживание и ремонт терминалов. Согласно прогнозам экспертов, изменения приведут к улучшению технического состояния оборудования на 10% и повышению скорости обращения запасов, а уровень сервиса по поставкам увеличится на 20%. Сайт АНО «Радиочастотный спектр» сообщает об этом.
Прогнозирование с помощью обработки больших объемов данных становится все более популярным. Основная идея заключается в создании моделей и прогнозировании будущих событий и поведения людей на их основе. Такой подход способен помочь в различных сферах, таких как планирование рекламных кампаний, определение спроса на услуги и товары, а также помогать взаимодействовать с клиентами.
Преимущество использования предсказательной аналитики на основе Big Data не ограничивается только сферой маркетинга и торговли. В сфере образования, например, она может помочь определить вероятность успеха учеников и эффективность программ.
Прогнозная аналитика уже нашла свое применение в авиации. Airbus планирует использовать предиктивное обслуживание к 2025 году для уменьшения случаев, когда некоторые самолеты не могут вылететь из-за выявленных неисправностей. Другая компания, Lufthansa Technik, уже внедрила платформу, которая прогнозирует сроки замены деталей.
Таким образом, использование прогнозной аналитики на основе больших объемов данных может иметь практическую пользу в различных отраслях, увеличивая эффективность процессов и помогая предсказать будущие события и тренды.
Небольшая статистика
Консалтинговая компания Accenture провела исследование в 2014 году, опросив руководителей 1000 компаний из разных стран мира. Было обнаружено, что 60% из них уже внедрили системы анализа больших данных и были довольны результатами. Участники опроса отметили создание новых продуктов и услуг, увеличение количества способов заработка, улучшение клиентского опыта, а также повышение лояльности клиентов среди основных преимуществ Big Data. Источник: https://www.tadviser.ru/.
Фото: freepik.com